NOTICE (March 2018): This website provides access to the CDIAC archive data temporarily. It will be gradually transitioned into data packages in the new ESS-DIVE archive. This site will continue to operate in parallel during and after the transition, and will be retired at a future date. If you have any questions regarding the data or the transition, please contact ess-dive-support@lbl.gov.

image image image image
 

Soil Carbon Sequestration and Land-Use Change: Processes and Potential

PDF file Full text

Global Change Biology 6:317-327 (2000)

Wilfred M. Post and K.C. Kwon

Environmental Sciences Division
Oak Ridge National Laboratory
P.O. Box 2008
Oak Ridge, TN 37831-6290 U.S.A.

Sponsor: U.S. Department of Energy's Office of Science, Biological and Environmental Research Program

DOI: 10.3334/CDIAC/tcm.009

Abstract

When agricultural land is no longer used for cultivation and allowed to revert to natural vegetation or replanted to perennial vegetation, soil organic carbon can accumulate. This accumulation process essentially reverses some of the effects responsible for soil organic carbon losses from when the land was converted from perennial vegetation. We discuss the essential elements of what is known about soil organic matter dynamics that may result in enhanced soil carbon sequestration with changes in land-use and soil management. We review literature that reports changes in soil organic carbon after changes in land-use that favour carbon accumulation. This data summary provides a guide to approximate rates of SOC sequestration that are possible with management, and indicates the relative importance of some factors that influence the rates of organic carbon sequestration in soil. There is a large variation in the length of time for and the rate at which carbon may accumulate in soil, related to the productivity of the recovering vegetation, physical and biological conditions in the soil, and the past history of soil organic carbon inputs and physical disturbance. Maximum rates of C accumulation during the early aggrading stage of perennial vegetation growth, while substantial, are usually much less than 100g C m–2 y–1. Average rates of accumulation are similar for forest or grassland establishment: 33.8 g C m–2 y–1 and 33.2 g C m–2 y–1, respectively. These observed rates of soil organic C accumulation, when combined with the small amount of land area involved, are insufficient to account for a significant fraction of the missing C in the global carbon cycle as accumulating in the soils of formerly agricultural land.

Data on soil carbon accumulation during forest establishment after agricultural use:

Data on soil carbon accumulation during pasture establishment after agricultural use:

Data summarized in bar charts, and a list of corrections in the form of email exchanges, are provided by Dr. Post on the following Web site: http://www.esd.ornl.gov/~wmp/

tow 01/2005